© 1991 Federation of European Biochemical Societies 00145793/91/\$3.50 ADON/S 0014579391002752

D-[35S(U)]Inositol 1,4,5-trisphosphorothioate, a novel radioligand for the inositol 1,4,5-trisphosphate receptor

Complex binding to rat cerebellar membranes

R.A. John Challiss¹, Susan M. Smith¹, Barry V.L. Potter² and Stefan R. Nahorski¹

Department of Pharmacology and Therapeutics, University of Leicester, Leicester, LEI 9HN, UK and 2 School of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA27AY, UK

Received 17 January 1991

D-[2*S(U)]mya-inositol 1,4,5-trisphosphorethicate ([2*S]InsPS₃), a synthetic, metabolically stable analogue of inositol 1,4,5-trisphosphate (InsP₃), binds with high affinity (K₃ 58.6±9.1 nM) to rat cerebellar membranes revealing a high density of specific binding sites (B_{mst} 21.5±2.1 pmol/mg of protein). Comparison with [2H]InsP₃ binding reveals a higher density of sites labelled by [2*S]InsPS₃ and complex competition curves for displacement of specific [2*S]InsPS₃ by InsP₃. The results suggest that [2*S]InsPS₃ labels two sites in rat cerebellar membranes with equal affinity: the InsP₃ receptor and a site that displays low affinity for InsP₃.

Inositol 1,4,5-trisphosphate; Inositol 1,4,5-trisphosphorothioate; Inositol 1,4,5-trisphosphate receptor

1. INTRODUCTION

InsP₃ is the second messenger linking receptor-mediated activation of phosphoinositidase C to the release of Ca²⁺ from intracellular stores [1]. Substantial evidence that InsP₃ interacts with specific receptors has come from studies using radiolabelled InsP₃ [2-4], and the very high density of sites present in cerebellum [4,5] has allowed a careful analysis of the stereo- and positional specificity of these sites [4]. Moreover, the recent cloning and sequencing of the InsP₃ receptor from cerebellum [6], and its reconstitution into synthetic lipid bilayers and expression in the fibroblast L cell-line following gene transfection [7] have established that the recognition site is linked to Ca²⁺ channels in the endoplasmic reticulum.

Further studies on the relationship between InsP₃ recognition and channel opening have been hindered until recently by a lack of structurally-modified analogues. The first example of such a compound was inositol 1,4,5-tris-phosphorothioate (InsPS₃) [8] which binds to InsP₃ receptor sites in several tissues with only slightly decreased affinity compared to InsP₃. Moreover, it is a full and potent agonist for the release of intracellular Ca²⁺ and as expected from the properties of phosphorothioates, it is resistant to InsP₃-5-phosphatase, is not recognised with high affini-

Correspondence address: R.A.J. Challiss, Department of Pharmacology and Therapeutics, University of Leicester, P.O. Box 138, Medical Sciences Building, University Road, Leicester, LE1 9HN, UK

ty by InsP₃-3-kinase, and causes sustained Ca²⁺ release from intracellular stores in cells [9].

In view of these properties, a high specific activity ³⁵S-labelled InsPS₃ has been prepared as a novel radioligand for the InsP₃ receptor. The present data indicate, that this radioligand labels not only the InsP₃ receptor, as recognised by its natural ligand, but may also interact with another conformation of this receptor, and/or other sites in rat cerebellum.

2. MATERIALS AND METHODS

2.1. Materials

[35S(U)]InsPS₃ (25 Ci/mmol), [3H]InsP₃ (17 Ci/mmol) and InsPS₃ were obtained as gifts from NEN DuPont (UK) Ltd. D-InsP₃ was purchased from RBI/SEMAT; D-Ins(2,4,5)P₃ and D-Ins(1,3,4,5)P₄ were purchased from Boehringer Mannheim; low m.wt. heparin was purchased from Sigma. L-InsP₃ was synthesized as in [8].

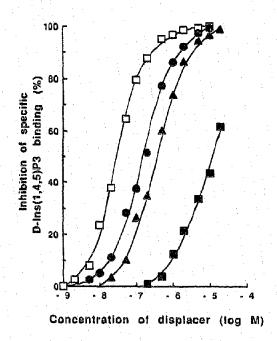
2.2. Membrane preparation and [15SJInsPS] and [3H]InsP3 binding studies

A crude 'P₂' membrane fraction was prepared from rat cerebella in 20 mM NaHCO₃, 1 mM dithiothreitol, pH 8.0 as described previously [10,11]. Binding experiments were performed at 4°C in a final volume of 160 μ l containing 25 mM Tris-HCl, 1 mM EDTA, pH 8.0. Isotopic dilution and competition experiments were performed in the presence of a single concentration of [35 S]InsPS₃ (3-6 nM) or [3 H]InsP₃ (2-3 nM) and various concentrations of competing ligands. Binding experiments were initiated by addition of 40-100 μ g of cerebellar 'P₂' membrane protein and terminated after 30 min by centrifugation (12 000 × g, 4 min). The supernatant was carefully removed and the pellet solubilized before addition of scintillant for determination of radioactivity.

2.3. Data anulysis

 K_d and B_{max} , values were derived by Scatchard transformation of the data obtained in isotope dilution experiments [10]. Competition isotherms were initially analysed by computer-assisted curve-fitting (ALLFIT; [12]) to obtain $\{C_{1d}\}$ values. Curve-fitting routines were applied to compare one and two-site modelling of the data-sets (see Table 1).

3. RESULTS AND DISCUSSION


Although [35]InsPS₃ is resistant to both enzymic phosphorylation and dephosphorylation [10], under the present assay conditions there was no significant metabolism of either [3H]InsP₃ or [35]InsPS₃. Specific binding of [3H]InsP₃ to rat cerebellar membranes demonstrated characteristics virtually identical to those we have reported previously [4,11]. The high density of apparently homogenous binding sites was clearly stereo- and positionally specific and all competing ligands (including InsPS₃) displaced binding with slope factors close to unity (Fig. 1A, Table I). The properties of these sites are clearly compatible with those associated with the InsP₃ receptor linked to Ca²⁺ release from cerebellar microsomes [13] or those expressed in fibroblast L cells following gene transfection [7].

The properties of [35S]InsPS₃ binding to cerebellar membranes under the same conditions appear to be more complex. Although the association rate of [35S]InsPS₃ is rapid, and binding is reversible (data not shown), this radioligand labels a significantly higher

number of cerebellar sites than [3H]InsP, (Fig. 2). [15S]InsPS, appears to label all its specific sites with an identical affinity (albeit 3-fold lower than [H]InsP₁). However, competition for these sites by a variety of inositol polyphosphates reveals a clear heterogeneity of the [18S]InsPS₁-labelled sites. This is particularly evident for the InsP, interaction with these sites; the biphasic binding curve can be accurately described using computer-assisted curve fitting by an interaction with two sites possessing an almost 500-fold difference in affinity (Table I). However, all the other competing ligands displayed simple displacement curves which were better fitted by one-site compared to two-site models, although both Ins(2,4,5)P, and Ins(1,3,4,5)P4 displacement isotherms yielded slope factors significantly less than unity.

These data suggest therefore, that $[^{35}S]InsPS_3$ labels two populations of sites in cerebellar membranes with equal, or near-equal affinity. These sites are distinguished by their very different affinities for $InsP_3$. The site exhibiting high affinity for $InsP_3$ represents about 60% of the specific sites labelled with $[^{35}S]InsPS_3$ (Fig. 1B) and almost certainly is identical to the entire population labelled with $[^{3}H]InsP_3$. This is reflected in the excellent agreement of the differences in B_{max} , values obtained between the radioligands (Fig. 2) and the proportion of sites labelled with $[^{35}S]InsPS_3$ and displaced with high affinity by $InsP_3$ (Fig. 1B).

The major question in the present study lies with the nature of the additional sites labelled with high affinity

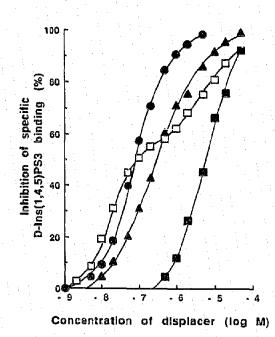


Fig. 1. Specificity of [³H]InsP₃ and [³⁵S]InsPS₃ binding to cerebellar membranes. Assays were performed as described in section 2 with 2-3 nM [³H]InsP₃ or 3-6 nM [³⁵S]InsPS₃ and the indicated concentrations of D-InsP₃ (□), L-InsP₃ (□), D-InsPS₃ (♠) or D-Ins(2,4,5)P₃ (♠). Non-specific binding was defined by 50 μM DL-InsP₃ for [³H]InsP₃, and 50 μM D-InsPS₃ for [³⁵S]InsPS₃ binding; similar non-specific binding values were obtained in the presence of 100 μg/ml low m.wt. heparin. Values are presented as means of at least 3 separate experiments performed in duplicate.

Table 1

Specificity of [3H]Ins(1,4,5)Ps and [38]Ins(1,4,5)PS; binding to cerebellar membranes

The second secon	('H)InsPs		THE STREET	("S)InsPSs	CHARLES AND SHOPE	100000000000000000000000000000000000000	THE RESERVE THE PARTY OF THE PA		
	IC:u	AH		1Csa	THE BOAT WASTERNOON	nH	A COLUMN CONTRACTOR CO	SOUTH INVESTMENT OF THE PARTY.	
D-Inx(1,4,5)Ps	26.6 ± 2.3	1.01 ± 0.04	page source of	KH 21.9 ± 0.5 KL 9700 ± 500	an and the state of the state of		<u> </u>	The same of the sa	
L-1ns(1,4,5)Ps D-1ns(2,4,5)Ps	11900 ± 900 340 ± 22	0.95 ± 0.05 0.98 ± 0.04		8730 ± 2440 381 ± 15		1.04 ±			
D-Inx(1,4,5)PS, D-Inx(1,3,4,5)P ₄ Low m.wt. heparin*	141 ± 13 681 ± 121 1.8 ± 0.5	0.0 ± 10.1 20.0 ± 88.0 00.0 ± 81.1		68.1 ± 6.9 584 ± 78 1.6 ± 0.3		0.92 ± 0.83 ± 1.21 ±	0.02		

Values are means \pm S.E.M. for 3-6 separate experiments performed in duplicate using at least 10 concentrations of each displacing agent. All $1C_{50}$ values are expressed as nM, except* $\mu g/ml$. nH is the slope factor. For $lns(1,4.5)P_3$ displacement of specific [35S]InsPS₃ binding the data were best fitted by a two-site model and K_{11} and K_{12} values are given.

by [35 S]InsPS₃, but not by [3 H]InsP₃. The rank order of inositol polyphosphate binding of this site (D-InsPS₃ > D-Ins(2,4,5)P₃ > D-InsP₃ > L-InsP₃) is dissimilar to that observed in Ca²⁺-release experiments [9,14] and it is tempting to dismiss such sites as unrelated to the InsP₃ receptor linked to Ca²⁺ channels; however, alternative, low-capacity recognition sites for InsPS₃ do not come readily to mind.

InsPS₃ is a potent inhibitor of InsP₃-5-phosphatase [15], but the discrepancy between the K_1 value (6 μ M for DL-InsPS₃) at this enzyme and the present binding site K_d (0.06 μ M), coupled to the low capacity of this membrane site argues against the labelling of 5-phosphatase. Furthermore, the very high affinity of heparin for this site, and the inability of this glycosaminoglycan to inhibit the 5-phosphatase enzyme [16] virtually eliminates

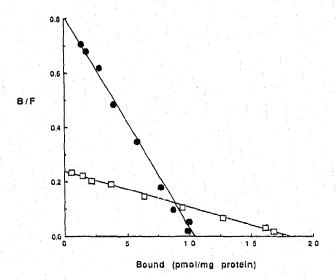


Fig. 2. Scatchard analysis of [3 H]InsP $_3$ and [35 S]InsPS $_3$ binding to cerebellar membranes. Data are presented for an isotope dilution experiment performed using [3 H]InsP $_3$ ($^{\odot}$) or [35 S]InsPS $_3$ ($^{\odot}$), using 9 concentrations of InsP $_3$ or InsPS $_3$ in duplicate, respectively. Scatchard analysis of this and 3-4 further data sets gave the following kinetic parameters for InsP $_3$ and InsPS $_3$ binding: K_d 19.7 \pm 3.4 vs. 58.6 \pm 9.1 nM, P<0.01; and B_{max} . 12.8 \pm 1.1 vs. 21.5 \pm 2.1 pmol/mg protein, P<0.01.

this possibility. InsPS₃ possesses very low affinity for InsP₃-3-kinase [9], which is also a predominantly cytosolic enzyme, making the 3-kinase another unlikely candidate for the additional binding sites for [35S]InsPS₃.

Since [35S] InsPS₃ is the only available alternative radioligand for the InsP3 receptor, the possibility of labelling another conformation of this receptor should be considered. The relationship between binding of InsP₃ to its receptor and Ca²⁺ channel opening appears to be complex [17]. Generally the binding affinity of InsP₃ is higher than its ability to release Ca²⁺ [3,7,16,18,19] (but see [14]). Indeed, recently it has been argued that the high-affinity sites may represent a desensitized form of the InsP3 receptor [20]. Although InsPS₃ and Ins(2,4,5)P₃ are both agonists at the InsP₃ receptor [9], it is not known whether the relationship between binding, Ca2+ channel opening and desensitization is the same for these ligands as for InsP₃. Perhaps InsPS₃ and Ins(2,4,5)P₃ are less efficacious and bind with almost equal affinity to (and therefore stabilise) the proportions of two conformations of the receptor. Crucial to such an argument is the behaviour of heparin, which is a competitive antagonist at the InsP₃ receptor [16], and binds to both sites labelled with [35S]InsPS₃ with equal affinity. Therefore, it could be argued that the antagonist heparin and the less efficacious agonists InsPS3 and Ins(2,4,5)P3 bind to both conformations of the InsP3 receptor with equal affinities. In such a model only the natural second messenger InsP3 (the most efficacious agonist) binds with higher affinity to one conformation of the receptor. Alternatively the extra sites specifically labelled by [35S]InsPS₃ may represent quite separate entities. The recent observation by McCarren et al. [21] that InsPS₃, but not InsP3 (even at high concentrations), could activate a novel K+ conductance in hippocampal pyramidal cells may support this view.

Further investigation, including purification of these sites is required to distinguish between these possibilities. However, the present data represent the first results with an alternative radioligand to InsP₃ for

its receptor and reveals new information which may help in our understanding of the cellular roles of inositol polyphosphates.

Acknowledgements: This work was supported by the Wellcome Trust and the SERC (Molecular Recognition Initiative). We gratefully acknowledge the generous gifts of [35]Ins(1,4,5)PS₃, [4H]Ins(1,4,5)P₃ and D-Ins(1,4,5)PS₃ from NEN Research Products, DuPont (UK) Lid. Biotechnology Systems, Stevenage, Herts, UK, B,V,L,P, is a Lister Institute Research Fellow.

REFERENCES

- [1] Berridge, M.J. and Irvine, R.F. (1989) Nature 341, 197-205.
- [2] Spat, A., Bradford, P.G., McKinney, J.S., Rubin, R.P. and Putney, J.W. (1986) Nature 319, 514-516.
- [3] Guillemette, G., Balla, T., Baukal, A.J. and Catt, K.T. (1987)J. Biol. Chem. 262, 1010-1015.
- [4] Willcocks, A.L., Cooke, A.M., Potter, B.V.L. and Nahorski, S.R. (1987) Biochem. Biophys. Res. Commun. 146, 1071-1078.
- [5] Worley, P.F., Baraban, J.M., Colvin, J.S. and Snyder, S.H. (1987) Nature 325, 159-161.
- [6] Furiuchi, T., Yoshikawa, S., Miyawaki, A., Wada, K., Maeda, N. and Mikoshiba, K. (1989) Nature 342, 32-38.
- [7] Miyawaki, A., Furiuchi, T., Maeda, N. and Mikoshiba, K. (1990) Neuron 5, 11-18.

- [8] Cooke, A.M., Gigg, R. and Potter, B.V.L. (1987) J. Chem. Soc. Chem. Commun., 1525-1526.
- [9] Nahorski, S.R. and Potter, B.V.L. (1989) Trends Pharmacol. Sci. 10, 139-144.
- [10] Challiss, R.A.J., Chilvers, E.R., Willcocks, A.L. and Nahorski, S.R. (1990) Blochem, J. 265, 421-427.
- [11] Willcocks, A.L., Challiss, R.A.J. and Nahorski, S.R. (1990) Eur. J. Pharmacol. 189, 185-193.
- [12] DeLean, A., Munson, P.J. and Rodbard, D. (1978) Am. J. Physiol. 235, E97-E102.
- [13] Joseph, S.K. and Rice, H.L. (1989) Mol. Pharmacol. 35, 355-359.
- [14] Nunn, D.L. and Taylor, C.W. (1990) Biochem. J. 270, 227-232.
- [15] Cooke, A.M., Nahorski, S.R. and Potter, B.V.L. (1989) FEBS Lett. 242, 373-377.
- [16] Guillemette, G., LaMontagne, S., Boulay, G. and Mouillae, B. (1989) Mol. Pharmacol. 35, 339-344.
- [17] Meyer, T., Wensel, T. and Stryer, L. (1990) Biochemistry 29, 32-37.
- [18] Hirata, M., Watanabe, Y., Ishimatsu, T., Ikebe, T., Kimura, Y., Yamaguchi, K., Ozaki, S. and Koga, T. (1989) J. Biol. Chem. 264, 20303-20308.
- [19] Nahorski, S.R. (1988) Trends Neurosci. 11, 444-448.
- [20] Pietri, F., Hilly, M. and Mauger, J.-P. (1990) J. Biol. Chem. 265, 17478-17485.
- [21] McCarren, M., Potter, B.V.L. and Miller, R.J. (1989) Neuron 3, 461-471.